L16 – Week 8 Introduction to Statistical Learning Theory: VC dimension and Learnability

CS 295 Optimization for Machine Learning Ioannis Panageas

Recap:

• We saw that the hypothesis classes of finite cardinality are PAC learnable using Chernoff Bounds and Union Bound. What if the class is not finite?

Recap:

• We saw that the hypothesis classes of finite cardinality are PAC learnable using Chernoff Bounds and Union Bound. What if the class is not finite?

Lemma (Threshold functions). Consider the Hypothesis class of threshold functions on the real line, that is

$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}$$

where $h_a(x) = \mathbf{1}_{x < a}$. \mathcal{H} is PAC learnable using ERM algorithm (even if the class is infinite).

Recap:

• We saw that the hypothesis classes of finite cardinality are PAC learnable using Chernoff Bounds and Union Bound. What if the class is not finite?

Lemma (Threshold functions). Consider the Hypothesis class of threshold functions on the real line, that is

$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}$$

where $h_a(x) = \mathbf{1}_{x < a}$. \mathcal{H} is PAC learnable using ERM algorithm (even if the class is infinite).

Remarks:

- Therefore it is not necessary that the hypothesis class is of finite cardinality.
- We will show the lemma above, i.e., (ϵ, δ) -learnable using $\frac{\log_{\delta}^2}{\epsilon}$ samples.

Proof. Let *D* be the marginal distribution over the domain and fix ϵ, δ . We need to show that taking *S* samples IID of size $\frac{\log(2/\delta)}{\epsilon}$ suffices so that with probability $1 - \delta$ the generalization error is at most ϵ .

Proof. Let *D* be the marginal distribution over the domain and fix ϵ, δ . We need to show that taking *S* samples IID of size $\frac{\log(2/\delta)}{\epsilon}$ suffices so that with probability $1 - \delta$ the generalization error is at most ϵ .

Let a^* be a number such that h_{a^*} has error zero (perfect fit).

Moreover, consider $a_0 < a^* < a_1$ such that

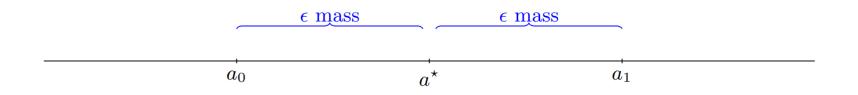
$$\Pr_{x \sim D}[x \in (a_0, a^*)] = \Pr_{x \sim D}[x \in (a^*, a_1)] = \epsilon.$$

Proof. Let *D* be the marginal distribution over the domain and fix ϵ, δ . We need to show that taking *S* samples IID of size $\frac{\log(2/\delta)}{\epsilon}$ suffices so that with probability $1 - \delta$ the generalization error is at most ϵ .

Let a^* be a number such that h_{a^*} has error zero (perfect fit).

Moreover, consider $a_0 < a^* < a_1$ such that

$$\Pr_{x \sim D}[x \in (a_0, a^*)] = \Pr_{x \sim D}[x \in (a^*, a_1)] = \epsilon.$$



Observe that we might have to choose $a_0 = -\infty$ or $a_1 = +\infty$.

Optimization for Machine Learning

Proof cont. Let *S* be a set of IID samples and assume that the ERM algorithm returns a function h_S with threshold b_S .

If b_0 is the maximum x with label 1 and b_1 the minimum x with label 0 it holds that

 $b_S \in (b_0, b_1].$

Proof cont. Let *S* be a set of IID samples and assume that the ERM algorithm returns a function h_S with threshold b_S .

If b_0 is the maximum x with label 1 and b_1 the minimum x with label 0 it holds that

 $b_S \in (b_0, b_1].$

The error of h_S is at most ϵ if and only if $(b_0, b_1] \subseteq (a_0, a_1)$

Proof cont. Let *S* be a set of IID samples and assume that the ERM algorithm returns a function h_S with threshold b_S .

If b_0 is the maximum x with label 1 and b_1 the minimum x with label 0 it holds that

 $b_S \in (b_0, b_1].$

The error of h_S is at most ϵ if and only if $(b_0, b_1] \subseteq (a_0, a_1)$

Let's bound the probability of this event!

Proof cont. Let *S* be a set of IID samples and assume that the ERM algorithm returns a function h_S with threshold b_S .

If b_0 is the maximum x with label 1 and b_1 the minimum x with label 0 it holds that

 $b_S \in (b_0, b_1].$

The error of h_S is at most ϵ if and only if $(b_0, b_1] \subseteq (a_0, a_1)$

Let's bound the probability of this event!

By union bound we have

$$\Pr_{S \sim D^m}[(b_0 < a_0) \cup (b_1 > a_1)] \le \Pr_{S \sim D^m}[(b_0 < a_0)] + \Pr_{S \sim D^m}[(b_1 > a_1)].$$

Proof cont.

$$\Pr_{S \sim D^m}[(b_0 < a_0)] \le \Pr_S[\forall x \in S, x \notin (a_0, a^*)] = (1 - \epsilon)^m \le e^{-\epsilon m}$$

Proof cont.

$$\Pr_{S \sim D^m}[(b_0 < a_0)] \le \Pr_S[\forall x \in S, x \notin (a_0, a^*)] = (1 - \epsilon)^m \le e^{-\epsilon m}$$

Using the same argument, we conclude that the error probability is $2e^{-\epsilon m} = \delta$. Solving for *m* we get

$$m = \frac{\log(2/\delta)}{\epsilon}.$$

Proof cont.

$$\Pr_{S \sim D^m}[(b_0 < a_0)] \le \Pr_S[\forall x \in S, x \notin (a_0, a^*)] = (1 - \epsilon)^m \le e^{-\epsilon m}$$

Using the same argument, we conclude that the error probability is $2e^{-\epsilon m} = \delta$. Solving for *m* we get

$$m = \frac{\log(2/\delta)}{\epsilon}.$$

All hypothesis classes are learnable then? Not really

VC dimension

Definition (Restriction). Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, ..., c_m\}$. The restriction of \mathcal{H} to C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} . That is

 $\mathcal{H}_{\mathcal{C}} = \{h(c_1), ..., h(c_m)\} : h \in \mathcal{H}\},\$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

VC dimension

Definition (Restriction). Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, ..., c_m\}$. The restriction of \mathcal{H} to C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} . That is

 $\mathcal{H}_{\mathcal{C}} = \{h(c_1), ..., h(c_m)\} : h \in \mathcal{H}\},\$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Definition (Shattering). A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0,1\}$. That is $|\mathcal{H}_C| = 2^{|C|}$.

VC dimension

Definition (Restriction). Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, ..., c_m\}$. The restriction of \mathcal{H} to C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} . That is

 $\mathcal{H}_{\mathcal{C}} = \{h(c_1), ..., h(c_m)\} : h \in \mathcal{H}\},\$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Definition (Shattering). A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0,1\}$. That is $|\mathcal{H}_C| = 2^{|C|}$.

Definition (VC dimension). *The VC-dimension hypothesis class* \mathcal{H} *, denoted VCdim*(\mathcal{H})*, is the maximal size of a set* C *that can be shattered by* \mathcal{H} *. If* \mathcal{H} *can shatter sets of arbitrarily large size we say that* \mathcal{H} *has infinite VC-dimension.*

Examples

- The class of threshold functions on real line has VC dimension 1. Why?
- The class of interval functions on real line has VC dimension 2. Why?
- The class of aligned rectangle functions on the plane has VC dimension 4. Why?

Examples

- The class of threshold functions on real line has VC dimension 1. Why?
- The class of interval functions on real line has VC dimension 2. Why?
- The class of aligned rectangle functions on the plane has VC dimension 4. Why?

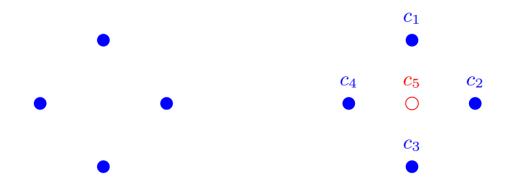


Figure 6.1 Left: 4 points that are shattered by axis aligned rectangles. Right: Any axis aligned rectangle cannot label c_5 by 0 and the rest of the points by 1.

Examples

- The class of threshold functions on real line has VC dimension 1. Why?
- The class of interval functions on real line has VC dimension 2. Why?
- The class of aligned rectangle functions on the plane has VC dimension 4. Why?

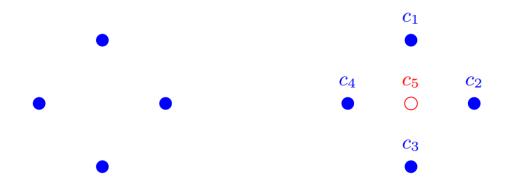


Figure 6.1 Left: 4 points that are shattered by axis aligned rectangles. Right: Any axis aligned rectangle cannot label c_5 by 0 and the rest of the points by 1.

• Any finite class H has VC dimension at most log |H|. Why?

Theorem (Halfspaces). The VC dimension of the class \mathcal{H} of homogenous halfspaces in \mathbb{R}^d is d. Note that $\mathcal{H} = \{h_w(x) : h_w(x) := sign(w^\top x)\}.$

Theorem (Halfspaces). The VC dimension of the class \mathcal{H} of homogenous halfspaces in \mathbb{R}^d is d. Note that $\mathcal{H} = \{h_w(x) : h_w(x) := sign(w^\top x)\}.$

Proof. We first need to show that VC dimension is at least *d* by appropriately choosing a set *C*.

Theorem (Halfspaces). The VC dimension of the class \mathcal{H} of homogenous halfspaces in \mathbb{R}^d is d. Note that $\mathcal{H} = \{h_w(x) : h_w(x) := sign(w^\top x)\}.$

Proof. We first need to show that VC dimension is at least *d* by appropriately choosing a set *C*.

Consider the set of vectors $e_1, ..., e_d$, where for every *i* the vector e_i is the all zeros vector except 1 in the *i*-th coordinate.

Theorem (Halfspaces). The VC dimension of the class \mathcal{H} of homogenous halfspaces in \mathbb{R}^d is d. Note that $\mathcal{H} = \{h_w(x) : h_w(x) := sign(w^\top x)\}.$

Proof. We first need to show that VC dimension is at least *d* by appropriately choosing a set *C*.

Consider the set of vectors $e_1, ..., e_d$, where for every *i* the vector e_i is the all zeros vector except 1 in the *i*-th coordinate.

This set is shattered by the class of homogenous halfspaces because for every binary vector $y_1, ..., y_d$, and for $w = (y_1, ..., y_d)$, we get that $h_w(e_i) = y_i$.

Theorem (Halfspaces). The VC dimension of the class \mathcal{H} of homogenous halfspaces in \mathbb{R}^d is d. Note that $\mathcal{H} = \{h_w(x) : h_w(x) := sign(w^\top x)\}.$

Proof. We first need to show that VC dimension is at least *d* by appropriately choosing a set *C*.

Consider the set of vectors $e_1, ..., e_d$, where for every *i* the vector e_i is the all zeros vector except 1 in the *i*-th coordinate.

This set is shattered by the class of homogenous halfspaces because for every binary vector $y_1, ..., y_d$, and for $w = (y_1, ..., y_d)$, we get that $h_w(e_i) = y_i$.

We need now to show that VC dimension is less than d + 1. Let $x_1, ..., x_{d+1}$ be a set of d + 1 vectors in \mathbb{R}^d .

Proof cont. Then, there must exist real numbers $a_1, ..., a_{d+1}$, not all of them are zero, such that

 $\sum a_i x_i = 0$ linearly dependent.

Proof cont. Then, there must exist real numbers $a_1, ..., a_{d+1}$, not all of them are zero, such that

$$\sum a_i x_i = 0$$
 linearly dependent.

Let
$$I = \{i : a_i > 0\}$$
 and $J = \{j : a_j < 0\}.$

If both *I*, *J* are non-empty then

$$\sum_{i\in I}a_ix_i=\sum_{j\in J}|a_j|x_j.$$

Proof cont. Then, there must exist real numbers $a_1, ..., a_{d+1}$, not all of them are zero, such that

 $\sum a_i x_i = 0$ linearly dependent.

Let
$$I = \{i : a_i > 0\}$$
 and $J = \{j : a_j < 0\}.$

If both *I*, *J* are non-empty then

$$\sum_{i\in I}a_ix_i=\sum_{j\in J}|a_j|x_j.$$

If $x_1, ..., x_{d+1}$ are shattered then there exists a w such that $w^{\top} x_i > 0$ for $i \in I$ and $w^{\top} x_j < 0$ for $j \in J$.

If $x_1, ..., x_{d+1}$ are shattered then there exists a w such that $w^{\top} x_i > 0$ for $i \in I$ and $w^{\top} x_j < 0$ for $j \in J$.

If the above is true, we get that

$$0 < \sum_{i \in I} a_i w^\top x_i = w^\top \sum_{i \in I} a_i x_i$$

If $x_1, ..., x_{d+1}$ are shattered then there exists a w such that $w^{\top} x_i > 0$ for $i \in I$ and $w^{\top} x_j < 0$ for $j \in J$.

If the above is true, we get that

$$egin{aligned} 0 < \sum_{i \in I} a_i w^ op x_i &= w^ op \sum_{i \in I} a_i x_i \ &= w^ op \sum_{j \in J} |a_j| x_j \end{aligned}$$

If $x_1, ..., x_{d+1}$ are shattered then there exists a w such that $w^{\top} x_i > 0$ for $i \in I$ and $w^{\top} x_j < 0$ for $j \in J$.

If the above is true, we get that

$$egin{aligned} 0 < \sum_{i \in I} a_i w^ op x_i &= w^ op \sum_{i \in I} a_i x_i \ &= w^ op \sum_{j \in J} |a_j| x_j \ &= \sum_{j \in J} |a_j| w^ op x_j < 0. \end{aligned}$$

If $x_1, ..., x_{d+1}$ are shattered then there exists a w such that $w^{\top} x_i > 0$ for $i \in I$ and $w^{\top} x_j < 0$ for $j \in J$.

If the above is true, we get that

$$egin{aligned} 0 < \sum_{i \in I} a_i w^ op x_i &= w^ op \sum_{i \in I} a_i x_i \ &= w^ op \sum_{j \in J} |a_j| x_j \ &= \sum_{j \in J} |a_j| w^ op x_j < 0. \end{aligned}$$

Contradiction!

Optimization for Machine Learning

Example of infinite VC

Theorem (sin has infinite VC). *Consider the real line and let*

 $\mathcal{H} = \{ x \to \lceil \sin(\theta x) \rceil : \theta \in \mathbb{R} \}.$

The VC dimension of the hypothesis class above is infinite.

Proof. We need to show that for every d one can find d points that are shattered by \mathcal{H} .

Example of infinite VC

Theorem (sin has infinite VC). *Consider the real line and let*

 $\mathcal{H} = \{ x \to \lceil \sin(\theta x) \rceil : \theta \in \mathbb{R} \}.$

The VC dimension of the hypothesis class above is infinite.

Proof. We need to show that for every d one can find d points that are shattered by \mathcal{H} .

Consider $x \in (0,1)$ and let $0.x_1x_2x_3...$, be the binary expansion of x. Then for any natural number m, $\lceil \sin(2^m \pi x) \rceil = 1 - x_m$, provided that there exists a $k \ge m$ such that $x_k = 1$.

Example of infinite VC

Theorem (sin has infinite VC). *Consider the real line and let*

 $\mathcal{H} = \{ x \to \lceil \sin(\theta x) \rceil : \theta \in \mathbb{R} \}.$

The VC dimension of the hypothesis class above is infinite.

Proof. We need to show that for every d one can find d points that are shattered by \mathcal{H} .

Consider $x \in (0,1)$ and let $0.x_1x_2x_3...$, be the binary expansion of x. Then for any natural number m, $\lceil \sin(2^m \pi x) \rceil = 1 - x_m$, provided that there exists a $k \ge m$ such that $x_k = 1$.

Fix *d* and consider $C = \{1/2, 1/4, ..., 1/2^d\}$ and moveover choose any binary vector of labels $(y_1, ..., y_d)$. Set $x = 0.y_1...y_d 1$ and use the above.

Why do we care about VC?

Theorem (Fundamental Theorem of Learnability). *The following are equivalent:*

- \mathcal{H} is PAC learnable.
- Any ERM rule is a successful PAC learner for H.
- *H* has finite VC dimension.

Remarks:

• The number of samples needed is $O\left(\frac{d\log_{\epsilon}^{1} + \log_{\delta}^{1}}{\epsilon}\right)$ where d is the VC dimension of the hypothesis class.

Conclusion

- Introduction to Statistical Learning.
 - VC dimension.
 - Examples.
 - Fundamental theorem of Learnability
- Last lecture we will be talking about Stochastic Games and Multi-agent RL.